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ABSTRACT

Theoretical expressions are derived for the steady-state frequency response of

a supported thermocouple wire. In particular, the effects of axial heat conduction

are demonstrated for both a supported one material wire and a two material wire

with unequal material properties across the junction. For the case of a one

material supported wire, an exact solution is derived which compares favorably

with an approximate expression that only matches temperatures at the support

junction. Moreover, for the case of a two material supported wire, an analytical

expression is derived that closely correlates numerical results.

Experimental data were taken with a type K supported thermocouple. The

test thermocouple was constructed with dimensions to demonstrate the effects of

axial heat conduction assuming constant physical properties across the junction.





I. INTRODUCTION

The evaluation of jet engine performance and fundamental studies of

combustion phenomena depend on the measurement of turbulent fluctuating

temperatures of the gas within the engine (Dils and Follansbee, 1976). Historically,

these temperatures have been measured with thermocouples. The design of a

thermocouple represents a compromise between accuracy, ruggedness and rapidity

of response.

For example, the measurement of fluctuating temperatures in the high speed

exhaust of a gas turbine engine combustor is required to characterize the local gas

density gradients or convective heat transfer (Fralick, 1985). Although

thermocouples are suitable for the measurement of high frequency temperature

fluctuations (< 1 KHz) in a flowing gas or liquid, the measured signal must be

compensated since the frequency of the time dependent fluid temperature is

normally much higher than the corner frequency of the thermocouple probe

(Scadron and Warshawsky, 1952). Moreover, the amplitude and phase angle of the

thermocouple response may be attenuated by axial heat conduction for rugged

thermocouples of finite length (Elmore, et al.; 1983, 1986).

In the present study, the theoretical steady-state frequency response of a

supported thermocouple wire has been calculated to include the effects of axial

heat conduction. These solutions, which represent an extension of earlier work

(Forney and Fralick, 1991) are derived for both a supported thermocouple wire



with equal physical properties across the junction (e.g., roughly the same

thermoconductivity, etc.) and a supported wire with unequal properties across the

junction. Solutions are presented in the form of the amplitude ratio and phase

angle for both cases.

II. THEORY FOR ONE MATERIAL THERMOCOUPLE

The steady-state frequency response of a thermocouple wire will be developed

with the following assumptions: (a) the amplitude of the fluctuating fluid

temperature is small relative to the mean absolute temperature (b) the

thermocouple dimensions are small relative to the size of the turbulent eddies or

enclosure dimensions (c) radial temperature gradients in a wire cross section can

be neglected and (d) radiative heat transfer can be neglected relative to conduction

and convection.

In this section the geometry of Fig. 1 is considered where the material

properties of thermal conductivity k, specific heat c and wire density p are assumed

to be equal on both sides of the thermocouple junction. If the probe is immersed

in a flowing fluid, the expression for the local conservation of energy in the

thermocouple wire becomes (Scadron and Warshawsky, 1952)

aT. a% 4h
(1)
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where a = k/pc is the thermal diffusivity of the wire, Tg is the ambient fluid

temperature, h is the convective heat transfer coefficient, D is the wire diameter

and Tw is the local wire temperature measured along the axis at a distance x from

the centerline (Fig. 1.)

The wire and fluid temperatures are measured relative to the mean fluid

temperature To. The ambient fluid temperature is taken to be a mean temperature

together with a sinusoidal varying deviation from the mean,

T,(t) = To+ Tie'"' (2)

where co is the angular frequency of the ambient temperature. Since Eq. (1) is

linear, we now seek a solution for the local wire temperature of the form

(Hildebrand, 1976)

-_ io_t
T,, = TO + To,(x)e . (3)

Referencing all temperatures with respect to the mean gas temperature To and

normalizing with respect to the amplitude of the fluctuating ambient fluid

temperature Tf, one defines a local normalized steady-state frequency response

T(x) for the thermocouple wire of the form

r,,-ro = f;,fx)e'*"= _(x)e'".
r/ rI
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Substituting Eqs. (2) and (3) into Eq. (1), one obtains an ordinary differential

equation of the form

d2T

RaT = a --_ + ra.(1-T) (5)

where T =/_(x) is the frequency response and the vector notation will be dropped

for simplicity. Thus, for the geometry of fig. 1, one seeks a solution to the non-

homogeneous linear second order differential equation for the dependent variable

T of the form (Forney and Fralick, 1990)

7 T" - G(co)T = - 1. (6)

The general solution to Eq.(6) can be written in the form (Hildebrand, 1976)

T(x) = A sinh qx + Bcosh qx +
(7)

where the parameters in Eqs. (5) and (6) are defined as

4h ct
to, - _, y- _,

pcD ¢o,, (8)

while in Eq. (7) the constants A and B are complex, 1/G(ro)

particular solution and the parameter

represents the
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1. Approximate Solution

q

Assuming that the material properties are constant across the junction and

that the wire diameters are D1 and D2 in regions 1 and 2, respectively, Eq. (6) is

subject to the boundary conditions

T_(I) = T2(I) = Ta (9a)

T2(l+ L) = 0 (9b)

In this case, we seek a simple approximate solution that neglects the heat transfer

at the interface between regions 1 and 2 at x = + I where the parameters in Eqs. (5)

and (6) are defined in terms of the wire diameters in each region. A similar

approach will be used in a later section to obtain an approximate solution for the

case in which the material properties of the two elements of the thermocouple are

distinctly different. Hence, in region 1

col = _, r = --, c,(oJ) = 1+ i(_)
pcD1 Col col (10)

" where w_ is the natural frequency of the wire in region I of fig. 1.
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The solution to Eq. (6) for the one material wire on both sides of the junction

in region 1 can be written in the form

T1(x) = A 1 sinh qlx + 1_ cosh q_x +
G_(_) (11)

Substituting x = + l in Eq. (11), the boundary conditions in Eq. (9) yield values for

the constants

A_ = 0, B_ = coshq, l T. - . (12)

Thus, one obtains a steady-state temperature distribution for the wire in region 1

of Fig. 1 in the form

1 I1_ coshqix _+ T ( c°shqlxT1(x) = _ coshql / j a_ coshql I j (13)

We now seek a solution in region 2 that satisfies the boundary conditions of

Eq. (9). Since the temperature is symmetric about x = 0, it is convenient to define a

continuous steady-state temperature distribution for the large wire of diameter D2

over the entire region -(I+ L) < x <_(I+L) or

1 fl cosh q_x
T2(x) = _'2 _. c°shq2(l + L) J" (14)
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Since Ta = T_(I), one obtains the boundary value from Eq. (14)

I11 c°shqzl 1Ta = -_2 c°shq2(/+L) " (15)

Substituting the value for T, at x = 1 of Eq. (15) into Eq. (13), the approximate

temperature distribution in region 1 becomes

cos.q:l, cos, , cos,q:T_(x) = _ coshq_l _ coshq2(l + L)) coshqtl (16)

Thus, the approximate frequency response at the thermocouple junction (x = 0) for

the one material wire becomes

coshq_l coshq2(l+L) coshq_l (17)

The steady-state frequency at the thermocouple junction

characterized graphically in the form

x=0 is normally

T(O) = IT(O)le'® (18)
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where [T(0)_ is the amplitude ratio and 4, is the phase angle. In the latter case, the

phase angle in degrees is

T(O)"=57.3
LRe T(0)

(19)

where Im[T(0)] and Re[T(0)] are the imaginary and real parts of T(0), respectively.

2. Exact Solution

If the boundary conditions listed in Eq.(9) include equal rates of conductive

heat transfer at the interface between the thermocouple and support wires at

x = + l, the exact solution is subject to

Tt(1) = T2(1) (20a)

= kD2eT (/)2ex (20b)

T2(I + L) = O . (20c)

Since the solution to Eq. (6) in region 1 is of the form

1
T_(x) = A_sinhq, x + B_coshqlx +

G1 (21)
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where by symmetry T_(l)= T_(-l), one obtains A1 -- 0. Thus, the form of the

solution in region 1 becomes

1
T,(x)= a,coshq,x

(22)u1

For region 2, where the spatial coordinate is in the range l<x<(l+L), it is

convenient to write

1
T2(x ) = A2sinhq2 (l + L-x ) + B2 coshq2(l + L-x) + --.

(23)

From the boundary condition T2(I + L)= 0, one obtains B2 = -l/G2 or the form of

the solution in region 2 becomes

T2(x) = A2sinhq2(l+L-x) + -_--_2[l-coshq2(l+ L-x)] . (24)

Substituting Eqs. (22) and (23) into boundary condition (20a), one obtains a

linear equation for the constants B_, A2 or

Bl coshq_l - A.zsinhq2L [1 - coshq2L ] G1 (25)

Similarly, substituting Eqs. (22) and (23) into boundary condition (20b), one obtains

a second linear equation for B_, Az or

9



B_Qsinhq_l + A.z coshq2L = -_2sinhq2L (26)

where the complex constant Q is defined as

Q=D_D_
2

(27)

Solving Eqs. (25) and (26) for B1 and A2, one obtains the determinate system

BI _-

G2 [1 - cosh q2L]

_ _-_2sinhq2 L

1

- sinh q2 t

cosh q2L ]

DET (28)

and

A'2 _"

l cosh q_l

Q sinh q_l

1[1- coshq2L]- 11

sinh q2L G1 I'

DET (2_

where the determinate in the denominator is equal to

DE/" = coshq_l coshq2L + Qsinhq_lsinhq2L. (30)

Thus, solving for the constants B1 and A2 from Eqs. (28) and (29) and substituting
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B_ into Eq. (22), one obtains an exact expression for the steady-state temperature

distribution in the form

[_-_(coshq2L-1)- lcoshq2Llcoshq_x
r,(x) = a, + !.

coshq_l coshq2L + Qsinhq_l sinhq2L G_ (31)

Thus, the steady-state frequency response at the thermocouple junction x-0

becomes

_-_(coshq2L- 1) - lcosh q2L 1
T (0) = f'/l + __ .

coshq_l coshq2L + Qsinhq_l sinhq2L G_ (32)

III. THEORY FOR TWO MATERIAL THERMOCOUPLE

Certain types of thermocouples have distinctly different material properties

across the junction. For example, a copper-constantan thermocouple has a

thermal conductivity on the copper side that is more than an order of magnitude

larger than constantan. In this case, the expressions developed in the previous

section for the frequency response are in error since unequal material properties

would provide an asymmetric temperature profile.

Referring to fig. 2, the thermocouple schematic now has four distinct regions

that are distinguished by either different wire diameters or physical properties. For

example, on the left side of the schematic of fig. 1 the thermal conductivity, density

11



and specific heat have the values kl, P_ and el, respectively, while on the right side

of the schematic the material properties are k2, Pz and c2.

1. Temperature Distribution for Small Wire

Since the differential equation describing the steady-state frequency response

Eq. (6) applies to all regions of the schematic of fig. 1, the steady-state frequency

response in regions 1 and 2 are given, respectively, by the expressions

1
TI(x ) = Alsinhqlx + Blcoshqlx + --7.

t, 1 (33)

1
T2(x ) = Azsinhq2x + B2coshq2x + _.

G2 (34)

Here, the four constants designated by A and B in Eqs. (33) and (34) are determined

by the four boundary conditions

T_(0) = T2(0) (35a)

iqn aZ(0) aT,(0)
1 dr =_l dr (35b)

Tz(-l) = Ta (35c)

T2(I) = Tb • (35d)
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Solving for the four values of the constants designated by A and B in Eqs. (33)

and (34), one obtains an expression for the steady-state temperature distribution in

region 1 of the form

+

[(1I + {sinhq,(x+l) 'G2r,(x)= c,

- 1.-_-lrQ coshq,xsinhq21
GiJL t

G1)c°shq21+(Tb-"_21]

(')- sinh ql x cosh q2' ]} _[
(36a)

and in region 2

I + {-Qt sinhq-(l-x)Irl llc°shql-I T- 1)]

( ll[c°shq2xsinhqll + , , J-_,/xj"+ Tb- _ Qtcoshq.lsinhq.x]l:ll
(36b)

Here, it should be noted that the two functions above can be obtained from each

other by interchanging the subscripts 1 and 2, the values a and b and by changing

the sign of x. Also, in Eqs. (36a) and (36b) the parameters

and

An = Qt cosh qll sinh q21 + cosh q21 sinh qll
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2. Temperature Distribution for Large Wire

the steady-state frequency response over the entire region -(l + L)< x < (l + L).

In this section a solution is sought for the large wire in regions 3 and 4 of the

schematic of fig. 2. To simplify the analysis, a continuous solution is derived for

This

solution must satisfy the boundary conditions

T(0) = T(0) (37a)

k 3 dx = da: (37b)

T (-I - L) = 0 (37c)

T(l + L) = 0. (37d)

w

In principle, it is now possible to derive a continuous solution for T3(x) over

the range -(l + L) < x < 0 and for T4(x) over the range 0 < x < (1 + L). These solutions

are obtained from Eqs. (36a) and (36b) by replacing the subscripts 1 _ 3 and 2 _ 4

and by redefining the parameters I _ I + L and setting the boundary conditions

Ta =T b =0. Moreover, the boundary condition Ta=T3(-I) is obtained from the

resulting expression for T3(x) by substituting x =-I while the boundary condition

Tb = T4 (1). Thus, one obtains values for Ta, Tb that appear in Eqs. (36a) and (36b) in

the form

14



and

Tb =-'_4 + {Q, sinhq, L , , coshq3(l + Ll-

l[coshq4lsinhq3(l+L)+Q, coshq3(l+L)sinhq, l]}(-_2 1.c, (39)

Here, the parameters are defined as

and

A2 = Qs cosh qa (l + L) sinh q4 (1 + L) + cosh q+(l + L) sinh q3(I + L)

3. Frequency Response

The steady-state frequency response for the two materiaI

thermocouple is obtained from Eq. (36a) or (36b) by setting x - 0:

supported

15



(40)

where Ta and Tb are given by Eqs. (38) and (39).

It should be noted that the steady-state frequency response Eq. (40) provides a

wire temperature that is continuous everywhere and conserves the heat flux at the

junction x = 0. This represents an approximate solution since the heat flux at the

interface between the large and small wires x = ± l has been neglected.

IV. RESULTS

The amplitude ratio and phase angle of the thermocouple frequency response

were plotted graphically for the case of a one material wire as shown in the

schematic of fig. 1. In this case, average properties of a type B or

t't/6% Rh-Pt/30% Rh were used since the material properties were nearly equal

across the thermocouple junction. The wire dimensions, properties and gas

conditions are listed in table l(Touloukian et al., 1970).

The amplitude ratio and phase angle were also plotted for a two material

thermocouple wire as shown in the schematic of fig. 2. In this case, a type B

thermocouple described in table 1 was used in addition to a type T or copper -

constantan described in table 2 (Touloukian et al., 1970).

The form of the convective heat transfer coefficient h that appears in the

16



computation of the natural frequency c,0, defined in Eq. (8) was determined from

the expression (Scadron and Warshawsky 1952)

Nu = .485 Re _ Pr)_ (41)

where Nu (= hD �k I) is the Nusselt number, kf is the thermal conductivity of the

ambient fluid, Pr(=v//a) is the Prandl number, and Re (=v D� v/) is the

Reynolds number of the thermocouple wire. Here, v and vl are the fluid velocity

and kinematic viscosity, respectively. It should be noted that the convective heat

transfer coefficient h o_ D 1/_ and the natural frequency of a thermocouple wire for

given material properties to, a D -3/2.

1. One Material Thermocouple

The amplitude ratio _F(0)[ at the wire junction for the steady-state frequency

response derived from Eqs. (17) and (32) is shown in fig. 3. This assumes a type B

thermocouple wire with the dimensions listed in table 1. In this case, the average

material properties listed in table 1 were used since the one material theory

assumes that the properties of the thermocouple wire are uniform across the

junction. It is evident in fig. 3 that the amplitude ratio derived from the

approximate expression Eq. (17) is nearly identical to the exact derivation Eq. (32).

Thus, it appears that the conservation of heat flux at the interface between the

small and large wires of the schematic of fig. 1 is of secondary importance.

Also included in fig. (3) are the numerical computations of Stocks (1986).
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These solutions represent explicit finite difference solutions to the one

dimensional unsteady heat transfer equation as shown in Eq. (1). The small

deviation of the numerical results from the exact solution at low frequency in fig.

(3) is apparently due to the unsteady character of the numerical results. Similar

computations of the phase angle _ for the type B thermocouple are represented in

fig. 4. As indicated, the phase angle varies over the range 0> (_>-_r/2 and

approaches the lower limit of -7r/2 for large frequencies ca/ca. >> 1.

The spacial variation of the amplitude ratio ]T(x)[ derived from Eqs. (17) and

(32) is graphed in fig. 5. These computations were made at an angular frequency of

ca/ca, = 0.1 for the type B thermocouple. As evident in fig. 5, the difference

between the exact and approximate expression is somewhat exaggerated at a very

low frequency. Nevertheless, the error represented by the approximate solution is

less than 7% over the length of the thermocouple. As stated earlier, matching the

heat flux at the interface between the small and large wire at x=+l in the

schematic of fig. 1 appears to be of secondary importance in relation to providing a

continuous temperature profile along the wire.

The amplitude ratio Ir(0)l,phase angle _ and spacial variation [T (x)[ are also

plotted in figs. (6), (7) and (8), respectively, from the steady-state frequency response

represented by Eqs. (17) and (32). These results represent a type B thermocouple

with a smaller diameter ratio D2/DI = 2 (see table 1 for dimensions). As indicated

in figs. (6), (7) and (8), the approximate and exact solutions represent comparable

results in all three cases. Thus, the diameter ratio of the large and small wire
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appears to have little effect in the favorable comparison between the approximate

and exact solutions representing the one material steady-state frequency response.

2. Two Material Thermocouple

The amplitude ratio IT (0_ at the wire junction for the steady-state frequency

response derived from Eqs. (17) and (40) is shown in fig. 9. This assumes a type B

thermocouple wire with the dimensions listed in table 2. In this case, the average

material properties listed in Table 2 were used for the amplitude of the frequency

response derived from the one material solution of Eq. (17). Also plotted in fig. 9

is the amplitude ratio derived from the two material solution of Eq. (40). In the

latter case, the individual material properties listed in Table 2 were used.

As expected, the amplitude ratio for the steady-state frequency response of a

type B thermocouple is nearly identical with either the one material or two

material approximate solutions. This is a consequence of roughly equal material

properties across the junction for type B thermocouples. This plot also validates

the two material approximate solution Eq. (40) and the values of the boundary

conditions for Ta and Tb substituted from Eqs (38) and (39). The same conclusion

can be drawn with respect to the phase angle _, shown in fig. 10.

The spacial variation of the amplitude ratio _F(x)_ derived from Eqs. (17) and

(40) is plotted in fig. 11. These computations were made at an angular frequency of

c0/c0, = 0.1 for the type B thermocouple with the dimensions listed in table 2. It is
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interesting to note the small asymmetry in the amplitude ratio on the left and

right side of the junction. This asymmetry is the result of the small differences in

the physical properties across the junction as listed in table 2.

The steady state amplitude ratio ]T(0)_ for a type T thermocouple is plotted in

fig. 12 using equations (17) and (40). The dimensions and material properties are

listed in table 2. The average material properties listed in Table 2 were used to

compute the amplitude ratio of the frequency response with the one material

solution, Eq. (17). Also plotted in fig. 12 is the amplitude ratio derived from the

two material solution, Eq. (40). In the latter case, the individual material

properties also listed in table 2 were used.

As indicated in fig. 12, the amplitude ratio for the approximate one material

steady-state frequency response of a type T thermocouple is distinctly different

from the two material approximate solution. This is a consequence of unequal

material properties across the junction for the type T thermocouple. Also shown

in fig. 12 is a numerical solution of the second order ordinary differential equation

for the temperature, Eq. (6). The numerical finite difference solution of the

boundary value problem of Eq. (6) matches both the temperature and heat flux at x

= 0 and x = + ! in the schematic of fig. 2. It is clear from fig. 12 that the approximate

two material analytical solution, equation (40), is in good agreement with the

numerical results despite some differences at low frequencies _/w_ < .04. Similar

results are indicated for the phase angle 4fin fig. 13.

The spacial variation of the amplitude ratio _F(x_ derived from Eqs. (17) and
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(40) is graphed in fig. 14. These computations were made at an angular frequency

of m/ca, = 0.1 for the type T thermocouple. As evident in fig. 14, the two material

solution derived from Eq. (40) accurately represents the features of the asymmetry

associated with a type T thermocouple. In particular, the relatively large resistance

to axial heat conduction in the constantan wire on the right of the junction is

reflected in the larger values of the amplitude ratio _F(x_. Also shown in fig. 14 is

the approximate one material solution represented by Eq. (17). In the latter case,

the average values for the material properties of a type T thermocouple were used

as listed in Table 2. Therefore, one can conclude that for thermocouples whose

material properties on either side of the junction are markedly different, the two

material solution developed in this paper is a substantial improvement in

accuracy both in frequency response and in temperature distribution along the

wire.

V. Experimental Procedure

In the experiment described below, thermocouple sensors were exposed to a

constant velocity air stream of varying temperature. In particular, the dynamic

response of the thermocouple sensors to a square wave temperature profile was

measured for a range of frequencies.

I. Rotating Wheel Experiment

A rotating wheel configuration was used to deliver the test airstream to the

proposed sensors. A similar experimental apparatus is described in detail by
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Elmore et al. (1986). A schematic of the rotating wheel apparatus used in the

present experiment is shown in figure 15. As the wheel rotates, the holes pass the

two air supply tubes which allow slugs of hot and cold air to alternately enter a

transition tube assembly mounted directly above the rotating wheel. In the

transition tube the slugs of hot and cold air coalesce into a single air stream

providing roughly a square wave temperature profile covering a range of

frequencies from roughly 1 to 30 Hz.

The analog temperature signal was digitized with a Data Translation DT-2801

board mounted in an expansion slot of an IBM AT compatible computer as shown

in figure 15. The ASYST software loaded on the hard disc of the personal

computer provided a flexible system for data storage, manipulation and display.

The true temperature profile of the airstream was measured with a constant

current anemometer (TSI 1054-A) and sensor (1226 PI 2.5).

2. Thermocouple Construction

Thermocouple wire of the desired length and type is threaded into the four

hole ceramic with the thermocouple end last. Three or four kinks are made in

each wire near the thermocouple end so the wire must be firmly pulled into the

tube leaving enough wire sticking out to make the thermocouple. Drops of epoxy

are picked up with a piece of .010" diameter wire, added to the ceramic tube at A

(see fig. 16) and pushed down around both wires. The kinks and epoxy firmly

fasten the wires in the ceramic so they do not twist when the free ends are
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manipulated for electrical connections.

The junction at B in figure 16 is made by cutting the large wire about half way

through with a razor blade, laying the small diameter wire in the cut, and welding

the cut dosed with a stored energy spot welder. After the weld, the excess wire

ends that protrude through the weld area are bent and broken off to clean up the

junction.

For the chromel alumel couples, the junction at C of figure 16 was made using

a stored energy spot welder. The wires are crossed and welded and then trimmed

with a razor blade and bent with tweezers under a microscope until collinear.

A stored energy spot welder will not work for the copper constantan couples.

For these couples the junctions were made by silver soldering. The silver solder

wire is coated with flux and the end heated with a torch until a drop forms. A

twisted pair of thermocouple wires is pushed briefly into the flux coated solder

drop. The solder will wet the pair up to where the twist stops. Again using a razor

blade and tweezers under a microscope, the thermocouple is bent and trimmed

until collinear.

3. ASYST Software

ASYST software was developed to acquire temperature data simultaneously

from the thermocouple and constant current anemometer. Data were digitized for

two channels at a sampling rate of 512 Hz per channel for a total sample time of
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two seconds. The ASYST software code is listed in figure 17.

The ASYST code first plotted the temperature profiles versus time from the

thermocouple and anemometer and an example of the plot is shown in figure 18.

The ASYST software next took the Fast Fourier Transform of the temperature data

in each channel and recorded the amplitude ratio and phase angle between both

channels at the first harmonic for the square wave. These data are discussed in the

next section.

VI. Results

Initial tests with a signal generator and the output from an RC circuit indicated

that the ASYST code and data acquisition hardware were operating properly.

Several test sensors were constructed and tested with the dimensions listed in

table 3. In each case measurements of the amplitude and phase angle were

compared with the appropriate theory. A discussion of the results is given below.

1. First Order Response

The amplitude ratio and phase angIe were measured with the type K

thermocouple listed first in table 3. The lengths of the thermocouple and support

wires in this case were chosen to eliminate the effects of axial heat conduction.

The experimental data representing the amplitude ratio are plotted in figure 19

along with the theory representing a first order frequency response. The

experimental data were correlated with a natural frequency col = 5.5 s_ -_ and a
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thermal diffusivity of a =.059 cm 2 / sec.

As indicated in figure 19 the data has been correlated with the theory to within

10%. Although the experimental data is reproducible, there is a noticeable drift of

the data relative to the theory with increasing wheel frequency ca. The drift is

probably due to a small increase in the natural frequency w_ of the thermocouple

wire with increasing wheel frequency ca.

The natural frequency ca_ of Equation (10) depends on accurate predictions of

the convective heat transfer coefficient h from Equation (41). However, there may

be a small change in either the mean air velocity or unsteadiness in the mean

velocity which would lead to small changes in the heat transfer coefficient h and

the natural frequency cal.

Also plotted in figure 20 are experimental data representing the phase angle _)

for the first order frequency response of the type K thermocouple. In this case the

data is correlated to within 7% of the theory. The experimental data for the phase

angle also indicate a small drift in the natural frequency ca_ as was apparent in

figure 19.

2. Frequency Response (one material)

The amplitude ratio and phase angle were measured with the second type K

thermocouple listed in table 3. The lengths of the thermocouple and support

wires in this case were chosen (i.e., shortened) to demonstrate the effects of axial
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heat conduction. The experimental data representing the amplitude ratio are

plotted in figure 21 along with the theoretical prediction given by Eq. 32. Both the

data and theory were correlated by assuming that the material properties are

uniform across the thermocouple junction. In this case the data were correlated

with a natural frequency ¢0_= 5.0 sec -1 and a thermal diffusivity of

o: = .059 cm 2 / see.

As indicated in figure 21 the data has been correlated with the theory to within

10% over most of the range of wheel frequencies. The data is reproducible but

again a noticeable drift of the experimental data exists relative to the theory as was

discussed in the previous section.

Also plotted in figure 22 are experimental data representing the phase angle

for the frequency response of the shortened type K thermocouple. The data is

correlated to within 7% of the theory. The experimental data for the phase angle

also indicate a small drift in the natural frequency ¢.0_.
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IV. NOMENCLATURE

A

B =

C z

D =

G

h

k

kf --

l =

L =

Nu

Pr --

Q

Qt

Qs _-

t ._

constant of integration

constant of integration

material specific heat (J-g m-l- °K-I)

thermocouple wire diameter (cm)

1+i(t0/t0.)

heat transfer coeffident (J- cm-2 -s-l- °K-l)

unit imaginary number (= "¢rZi)

material thermoconductivity (J - cm-l - s-l-°K-l)

gas thermoconductivity (J-cm-_ -s-_- °K-l)

length of small thermocouple wire (cm)

length of large thermocouple wire (crn)

Nusselt number (= hD/kf)

Prandl number (= v;/a)

kaql

k2q_

(o/r)

Reynolds number (= vD/ut)

time (s)
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T z

Tf =

Tg =

To =

T,, =

Greek Symbols

t_ I

=

p =

A l

A 2 =

steady-state frequency response

amplitude of periodic gas temperature (°K)

gas temperature (°K)

mean gas temperature (°K)

complex amplitude of periodic wire temperature( °K)

local wire temperature ( oK)

gasvelodty(_-,-s-')

axial distance from center of wire (cm)

thermal diffusivity (crn2 - s-I)

kinematic viscosity of gas (cm2 - s-l)

angular frequency (s-l)

natural frequency of wire (= 4h/pcD)(s -1)

phase angle

material density (grn - cm "3)

dimensionless function

dimensionless function

m
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Table I - Properties of One Material Wire (Type B)

Dimensions (ca'n)

_91 _ _LD_ ! L

.025 .05 2 .2 .35

.0076* .038 5 .1 .2

Average _Properties of T_vpe B

ksec ]

3.8 .22

Gas Properties

To = 900°/(

M = .26

P = latm

* caI = 32.9 sec -1
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Table 2 - Properties of Two Material Wire

Dimensions (cm)

_ _L__.

.0076 .038 5

Pt - 6% Rh

Pt - 30% Rh

Average

Copper

Constantan

Average

1

2

Properties of T_vpe B

2.73

2.86

2.8

Properties of T_vpe T

3.44 1.16

3.48 .067

3.46 .614

Wire Location

T_vpe B

Pt - 6% Rh

Pt - 30% Rh

Air Properties

To= 300°K

P= l atm

V = 5O m / sec

.238

.190

.214

Copper

Constantan
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Table 3 - Dimensions for Test Thermocouples (cm)

Test
Thermocouple

First Order K

Axial Conduction
(one material)

K

.0076 .038 5 0.25

.0076 .038 5 0.1

L

0.5

0.2

32



Ii

im

m

LJ.

t-
O

im

¢..)
r-

®

X

._I

_o91

0
S_

u_

l,n,l
o:

o3

QJ

0

0

33



LL

m

LL

iml

_ I_ _

® S Cl_c_

34



0
O

! I

m

o
in

35

0
,_.m.

3
0 _

o 3

qlrmD

!
0
,iruB

_0
C_

_E
_ o,.q

Q X

0 _



0
i I I I i

0 0 0 0 0 0

I ! I I I I

e

O

0
0

!

0

mr-,'-'-

3

3

r,0,)
t_

• w,,,f
m,-,,r •

mM

0,,,_

_ L,,,)

_.o



0

II

3

3

II

I,-.--

I

0

0
x

x
0
5,.,..

4--

i

O0
0

B

I.--

0

d

O0

0

d

d

0

d

0

d

d

0
0

_._1
-i-n

X

;>
.m,,w

"0

la,,_

• T'"a

V

.-_
O

0m-a

_._

_v

u-;

37



O
O

X

I -I- +

__. ++

-t

.4-

-I-

-4-

+

A
! I I I I I I

C_

I
C:::>

=...

I
O

¢::T
t J,..q

i t,.,4

• _,,.4

op,.a

@

r,j
I::;

• C
u_

• q,.,a
,._ ¢

_r,..

,._ .,.
;_¢',
..,-,_

38 ORIGINAL P,O=GEIS

OF POOR 0UALITy



0

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

I I i I i

0 C) 0 0 0 C) C)

I I I I I I I

e

m

m

m

m

m

i

0 0
CO C_

I !

0

3
0

o 3

I
0

6-'
r.T.l

I-,

E

I:
0

R
,,.,.,

_d _

GD

_R
_u

t<

39



0
4'

I I I I I

d d d d d d d d
m

X

0

0

d

d

0

d

d

-i-

x

•,,-, _

,,.,., ,_

(4

_ F,,T.)_

,,-, 0

{p,)

0 _

40



i i !

0
v

I--
w

0

0
0
,it.--.

I
0

3

3

(U

.gJq •

"1_ :::i

t_
0_JW

u 0

t_

o 2

* g,,,4

<._

41



C)

0
r.T.1

tmq

I

0

I

I

0
LO

I

w=,,==.

3

o 3

,T=====

I

0

..,.., o
r'_

>.,,

I I I

I I !

• u,,,,q

c
_'.t:

0 ,,r

o_
f,,..

s,,., Q

Q

_E

_-_

°!

=E
_C

e

42
0 _RIGINA_ P'_GE tS

OF POOR (_ALITY



0

o

II

3 -_-_

_ EE

c-_

I--.-

I I I i I I i i I

X

43



In ""' - "i:: ::I:

_1+= _

::I ca
o'E_

0 u_:
"-=2_

_8

I 1 I I = I I i I ii I _1

44



0

÷

I I I I I

0 0 0 0 0 0

I I I I I I

e

0

0
0

,if.,,===-

I
O

3

3

,.'=4

*e=l

0
U_

t=,
o.,,e

... r.T.)
o,=,

O

e=-.l

;> cn

U

45



0

m

X

l--

0

46



PRESSURE
REGULATOR

HIGH PRESSURE
AIR

e i

i i

i i

i i

i i

i •

i i

i i

• i
i e

i t

e i

i i

i i

i i

e i

e |

i ! = m
t J

I I

I I

e I

• u

• u

e I

I I

I I
I I

e J

| I
I g

I $

| I
I |

| |

a |

e I

I I

I I

THERMOCOUPLE

L CONSTANT CURRENT• F ANEMOMETER

HEATING
TAPE

HOT

INSULATION

I I I

m

1

MOTOR

I I.IIIIII.WIIIIIIIIII

_'''iIII'==III'llII..B_

II ..G.vE,oc, AIRSTREAM

COLD

I ROTATING
- WHEEL

, 1

1
TSI i054-A

ANEMOMETER

ICE
BATH

AMPLIFIER

_1 DT-2800.

J/VD BOARD

PERSONAL I
COMPUTER

W/ASYST SOFTWAR E

I I

PRINTER J l STORAGE
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FORGET. ALL

REAL DIM[ 1024 ] ARRAY TIME

COMPLEX DIM[ 1024 ] ARRAY TRANS

REAL DIM[ 6 ] ARRAY ANS
REAL DIM[ 1024 ] ARRAY ZMAGO

REAL DIM[ 1024 ] ARRAY ZARGO
INTEGER SCALAR NUM

REAL SCALAR MEN

REAL SCALAR CD

REAL DIM[ 1024 ] ARRAY FREQS

REAL DIM[ 1024 ] ARRAY SIGNAL

INTEGER dim[ 1024 , 2 ] array DATA.BUFFER

i. CD :=

.0000 DATA.BUFFER :=

LOAD.OVERLAY ACQUIS.SOV

.0000 1.0000 A/D.TEMPLATE DEMO.TEMPLATE
DATA.BUFFER TEMPLATE.BUFFER

CYCLIC

2048.0000 TEMPLATE.REPEAT

CD CONVERSION.DELAY

DEMO.TEMPLATE A/D.INIT

A/D.IN>ARRAY

LOAD.OVERLAY WAVEOPS.SOV

1024 REAL RAMP 1 - 2 * CD * i000 /

\ DEFINE AN A/D TEMPLATE

\ DECLARE ARRAY AS A TEMPLATE BUFFER

\ SET TEMPLATE BUFFER TO CYCLIC MODE

\ SET REPETITIONS FOR I/O INSTRUCTION

\ CONVERSION RATE (MSECS/SAMPLE)

\ INITIALIZE CURRENT A/D TEMPLATE

\ A/D INPUT TO TEMPLATES BUFFER

TIME :: \ SET TIME AXIS

DATA.BUFFER XSECT[ 1 ] 2048-
SIGNAL := SIGNAL

-2048 / I0 * -55.274 * 353. +
SIGNAL := SIGNAL

0.5 SET. CUTOFF. FREQ

SMOOTH SIGNAL := SIGNAL

MEAN MEN := SIGNAL

MEN - SIGNAL :=

TIME SUB[ 1 , 500 , 1 ]
XY. AUTO. PLOT SIGNAL

FFT

\ CHANNEL 1 ON STACK (ANEMOMETER)

\ CALIBRATE (DEGREES C)

\ SMOOTH DATA (CYCLES�POINT)

\ CENTER ON ORIGIN

SIGNAL SUB[ 1 , 500 , 1 ]

\ PLOT CHANNEL 1

\ TAKE FFT

TRANS := TRANS ZMAG ZMAGO :: \ MAGNITUDE OF FFT
5 SET.#.POINTS

1SET.#.OPTIMA

ZMAGO SUB[ I__120 , i ] LOCAL.MAXIMA \ FIND INDEX AND MAX OF MAGNITUDE
SWAP NUM := NUM \ INDEX OF MAX MAGNITUDE

1 - CD / 1024. / I000 * PI * \ FREQUENCY AT MAX MAGNITUDE

ANS[ i ] := ANS[ 1 ] DROP ANS [ 2 ] :=

TRANS [ NUM ] DEG ZARG ANS[ 3 ] := \ ARGUMENT AT MAX MAGNITUDE

DATA.BUFFER XSECT[ 2 ]-2048 -

SIGNAL := SIGNAL

.124 * SIGNAL := SIGNAL

0.5 SET.CUTOFF.FREQ

SMOOTH SIGNAL := SIGNAL

MEAN MEN := SIGNAL

\ CHANNEL 2 ON STACK (THERMOCOUPLE)

\ CALIBRATE (DEGREES F)

\ SMOOTH DATA (CYCLES/POINT)

ASYST Version 3.00

Page 1 TEMP3.FOR 03/13/91 ii:42:33.77
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MEN - SIGNAL :=

TIME SUB[ 1 , 500 , 1 ]

SIGNAL SUB[ 1 . 500 , 1 ]
XY. DATA. PLOT SIGNAL

FFT

TRANS := TRANS ZMAG ZMAGO :=

5 SET.#.POINTS

I SET. #. OPTIMA

\ CENTER ON ORIGIN

\ PLOT CHANNEL 2

\ TAKE FFT

\ MAGNITUDE OF FFT

ZMAGO SUB[ i 120 i ] LOCAL.MAXIMA \ FIND INDEX AND MAX OF MAGNITU]
SWAP NUM := NUM ' \ INDEX OF MAX MAGNITUDE

1 - CD / 1024. / I000 * PI * \ FREQUENCY AT MAX MAGNITUDE

ANS[ 4 ] := ANS[ 4 ] DROP ANS[ 5 ] :=

TRANS [ NUM ] DEG ZARG ANS[ 6 ] := \ ARGUMENT AT MAX MAGNITUDE

CR

" FREQ MAG PHI " CR

ANS[ i ] ? CR

ANS[ 5 ] ANS [ 2 ] / ? CR

ANS[ 3 ] -i * ANS[ 6 ] + 180 PI / CD * i000 / ANS [ i ] * - ? CR
FORGET.ALL

ASYST Version 3.00

Page 2 TEMP3.FOR 03/13/91 Ii:42:34.65

17. ASYST software
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